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Abstract

We introduce the new Multimodal Named
Entity Disambiguation (MNED) task for
multimodal social media posts such as
Snapchat or Instagram captions, which
are composed of short captions with ac-
companying images. Social media posts
bring significant challenges for disam-
biguation tasks because 1) ambiguity not
only comes from polysemous entities, but
also from inconsistent or incomplete nota-
tions, 2) very limited context is provided
with surrounding words, and 3) there are
many emerging entities often unseen dur-
ing training. To this end, we build a new
dataset called SnapCaptionsKB, a collec-
tion of Snapchat image captions submitted
to public and crowd-sourced stories, with
named entity mentions fully annotated and
linked to entities in an external knowledge
base. We then build a deep zeroshot mul-
timodal network for MNED that 1) ex-
tracts contexts from both text and image,
and 2) predicts correct entity in the knowl-
edge graph embeddings space, allowing
for zeroshot disambiguation of entities un-
seen in training set as well. The proposed
model significantly outperforms the state-
of-the-art text-only NED models, showing
efficacy and potentials of the MNED task.

1 Introduction

Online communications are increasingly becom-
ing fast-paced and frequent, and hidden in these
abundant user-generated social media posts are
insights for understanding users and their pref-
erences. However, these social media posts of-
ten come in unstructured text or images, making
massive-scale opinion mining extremely challeng-

(a) Traditional NED (b) Multimodal NED

Figure 1: Examples of (a) a traditional NED task,
focused on disambiguating polysemous entities
based on surrounding textual contexts, and (b) the
proposed Multimodal NED task for short media
posts, which leverages both visual and textual con-
texts to disambiguate an entity. Note that mentions
are often lexically inconsistent or incomplete, and
thus a fixed candidates generation method (based
on exact mention-entity statistics) is not viable.

ing. Named entity disambiguation (NED), the task
of linking ambiguous entities from free-form text
mention to specific entities in a pre-defined knowl-
edge base (KB), is thus a critical step for extracting
structured information which leads to its applica-
tion for recommendations, advertisement, person-
alized assistance, etc.

While many previous approaches on NED
been successful for well-formed text in disam-
biguating polysemous entities via context reso-
lution, several additional challenges remain for
disambiguating entities from extremely short
and coarse text found in social media posts
(e.g. “juuustin ” as opposed to “I love
Justin Bieber/Justin Trudeau/etc.”). In many of
these cases it is simply impossible to disambiguate
entities from text alone, due to enormous num-
ber of surface forms arising from incomplete and
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inconsistent notations. In addition, social media
posts often include mentions of newly emerging
entities unseen in training sets, making traditional
context-based entity linking often not viable.

However, as popular social media platforms are
increasingly incorporating a mix of text and im-
ages (e.g. Snapchat, Instargram, Pinterest, etc.),
we can advance the disambiguation task to incor-
porate additional visual context for understanding
posts. For example, the mention of ‘juuustin’ is
completely ambiguous in its textual form, but an
accompanying snap image of a concert scene may
help disambiguate or re-rank among several lex-
ical candidates (e.g. Justin Bieber (a pop singer)
versus Justin Trudeau (a politician) in Figure 1).

To this end, we introduce a new task called Mul-
timodal Named Entity Disambiguation (MNED)
that handles unique challenges for social media
posts composed of extremely short text and im-
ages, aimed at disambiguationg entities by lever-
aging both textual and visual contexts.

We then propose a novel zeroshot MNED
model, which obtains visual context vectors from
images with a CNN (LeCun et al., 1989), and com-
bines with textual context extracted from a bidi-
rectional LSTM (Dyer et al., 2015) (Section 2.2).
In addition, we obtain embeddings representation
of 1M entities from a knowledge graph, and train
the MNED network to predict label embeddings of
entities in the same space as corresponding knowl-
edge graph embeddings (Section 2.4). This ap-
proach effectively allows for zeroshot prediction
of unseen entities, which is critical for scarce-label
scenario due to extensive human annotation efforts
required. Lastly, we develop a lexical embeddings
model that determines lexical similarity between a
mention and potential entities, to aid in prediction
of a correct entity (Section 2.3). Section 2.5 details
the model combining the components above.

Note that our method takes different perspec-
tives from the previous work on NED (He et al.,
2013; Yamada et al., 2016; Eshel et al., 2017) in
the following important ways. First, while most of
the previous methods generate fixed “candidates”
for disambiguation given a mention from mention-
entity pair statistics (thus disambiguation is lim-
ited for entities with exact surface form matches),
we do not fixate candidate generation, due to in-
tractable variety of surface forms for each named
entity and unforeseen mentions of emerging en-
tities. Instead, we have a lexical model incorpo-

rated into the discriminative score function that
serves as soft normalization of various surface
forms. Second, we extract auxiliary visual con-
texts for detected entities from user-generated im-
ages accompanied with textual posts, which is cru-
cial because captions in our dataset are substan-
tially shorter than text documents in most other
NED datasets. To the best of our knowledge, our
work is the first in using visual contexts for the
named entity disambiguation task. See Section 4
for the detailed literature review.

Our contributions are as follows: for the new
MNED task we introduce, we propose a deep
zeroshot multimodal network with (1) a CNN-
LSTM hybrid module that extracts contexts from
both image and text, (2) a zeroshot learning layer
which via embeddings projection allows for entity
linking with 1M knowledge graph entities even
for entities unseen from captions in training set,
and (3) a lexical language model called Deep Lev-
enshtein to compute lexical similarities between
mentions and entities, relaxing the need for fixed
candidates generation. We show that the proposed
approaches successfully disambiguate incomplete
mentions as well as polysemous entities, outper-
forming the state-of-the-art models on our newly
crawled SnapCaptionsKB dataset, composed of
12K image-caption pairs with named entities an-
notated and linked with an external KB.

2 Proposed Methods

Figure 2 illustrates the proposed model, which
maps each multimodal social media post data
to one of the corresopnding entities in the KB.
Given a multimodal input that contains a men-
tion of an ambiguous entity, we first extract tex-
tual and visual features contexts with RCNNs and
Bi-LSTMs, respectively (Section 2.2). We also
obtain lexical character-level representation of a
mention to compare with lexical representation
of KB entities, using a proposed model called
Deep Levenshtein (Section 2.3). We then get high-
dimensional label embeddings of KB entities con-
structed from a knowledge graph, where similar
entities are mapped as neighbors in the same space
(Section 2.4). Finally, we aggregate all the contex-
tual information extracted from surrounding text,
image, and lexical notation of a mention, and pre-
dict the best matching KB entity based on knowl-
edge graph label representation and lexical nota-
tion of KB entity candidates (Section 2.5).
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Figure 2: The main architecture of our Multimodal
NED network. We extract contextual informa-
tion from an image, surrounding words, and lex-
ical embeddings of a mention. The modality at-
tention module determines weights for modalities,
the weighted projections of which produce label
embeddings in the same space as knowledge-base
(KB) entity embeddings. We predict a final candi-
date by ranking based on similarities with KB en-
tity knowledge graph embeddings as well as with
lexical embeddings.

2.1 Notations

Let X = {x(i)}Ni=1 a set of N input social me-
dia posts samples for disambiguation, with cor-
responding ground truth named entities Y =
{y(i)}Ni=1 for y ∈ YKB, where YKB is a set of
entities in KB. Each input sample is composed
of three modalities: x = {xw;xv;xc}, where
xw = {xw,t}Lw

t=1 is a sequence of words with
length Lw surrounding a mention in a post, xv
is an image associated with a post (Section 2.2),
and xc = {xc,t}Lc

t=1 is a sequence of characters
comprising a mention (Section 2.3), respectively.
We denote high-dimensinal feature extractor func-
tions for each modality as: w(xw), c(xc), v(xv).
We represent each output label in two modali-
ties: y = {yKB;yc}, where yKB is a knowl-
edge base label embeddings representation (Sec-

tion 2.4), and and yc is a character embeddings
representation of KB entities (Section 2.3: Deep
Levenshtein).

We formulate our zeroshot multimodal NED
task as follows:

y = argmax
y′∈YKB

sim
(
fx→y(x),y

′)
where fx→y is a function with learnable parame-
ters that project multimodal input samples (x) into
the same space as label representations (y), and
sim(·) produces a similarity score between predic-
tion and ground truth KB entities.

2.2 Textual and Visual Contexts Features
Textual features: we represent textual context
of surrounding words of a mention with a Bi-
LSTM language model (Dyer et al., 2015) with
distributed word semantics embeddings. We use
the following implementation for the LSTM.

it = σ(Wxiht−1 +Wcict−1)

ct = (1− it)� ct−1

+ it � tanh(Wxcxw,t +Whcht−1)

ot = σ(Wxoxw,t +Whoht−1 +Wcoct)

ht = ot � tanh(ct)

w(xw) = [
−−→
hLw ;

←−−
hLw ] (1)

where ht is an LSTM hidden layer output at de-
coding step t, and w(xw) is an output textual rep-
resentation of bi-directional LSTM concatenating
left and right context at the last decoding step
t = Lw. Biase terms for gates are omitted for
simplicity of formulation.

For the Bi-LSTM sentence encoder, we use pre-
trained word embeddings obtained from an un-
supervised language model aimed at learning co-
occurrence statistics of words from a large external
corpus. Word embeddings are thus represented as
distributional semantics of words. In our experi-
ments, we use pre-trained embeddings from Stan-
ford GloVE model (Pennington et al., 2014).

Visaul features: we take the final activation of
a modified version of the recurrent convolutional
network model called Inception (GoogLeNet)
(Szegedy et al., 2015) trained on the ImageNet
dataset (Russakovsky et al., 2015) to classify mul-
tiple objects in the scene. The final layer repre-
sentation (v(xv)) thus encodes discriminative in-
formation describing what objects are shown in an
image, providing cues for disambiguation.
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2.3 Lexical Embeddings: Deep Levenshtein
While traditional NED tasks assume perfect lex-
ical match between mentions and their corresop-
nding entities, in our task it is important to ac-
count for various surface forms of mentions (nick-
names, mis-spellings, inconsistent notations, etc.)
corresponding to each entity. Towards this goal,
we train a separate deep neural network to com-
pute approximate Levenshtein distance which we
call Deep Levenshtein (Figure 3), composed of
a shared bi-directional character LSTM, shared
character embedding matrix, fully connected lay-
ers, and a dot product merge operation layer. The
optimization is as follows:

min
c

∥∥∥∥12
(

c(xc) · c(x′c)>

‖c(xc)‖‖c(x′c)‖
+ 1

)
− sim(xc,x

′
c)

∥∥∥∥2
(2)

where c(xc) = [
−−−→
hc,Lc ;

←−−−
hc,Lc ]

where c(·) is a bi-directional LSTM output vec-
tor for a character sequence defined similar as in
Eq.1, sim(·) is an output of the Deep Levenshtein
network, producing a normalized similarity score
with a range [0,1] based on Levenshtein edit dis-
tance, and (xc,x

′
c) is any pair of two strings. We

generate millions of these pairs as training data by
artificially corrupting seed strings by varying de-
grees (addition, deletion, replacement).

Once trained, it can produce a purely lexical
embedding of a string without semantic allusion
(via c(·)), and predict lexical similarity between
two strings based on their distance in the embed-
ding space. On an intuitive level, this component
effectively bypasses normalization steps, and in-
stead incorporates lexical similarities between in-
put mentions and output KB entities into the over-
all optimization of the disambiguation network.

We use by-product c(·) network to extract lex-
ical embedings of mentions and KB entities, and
freeze c in training of the disambiguation network.
We observe that this approach significantly out-
performs alternative ways to obtain character em-
beddings (e.g. having a character Bi-LSTM as a
part of the disambiguation network training, which
unnecessarily learns semantic allusions that are
prone to errors when notations are inconsistent.)

2.4 Label Embeddings from Knowledge
Graph

Due to the overwhelming variety of (newly trend-
ing) entities mentioned over social media posts, at

Figure 3: Deep Levenshtein, which predicts
approximate Levenshtein scores between two
strings. As a byproduct of this model, the shared
Bi-LSTM can produce lexical embeddings purely
based on lexical property of character sequences.

test phases we frequently encounter new named
entities that are unseen in the training data. In or-
der to address this issue, we propose a zeroshot
learning approach (Frome et al., 2013) by induc-
ing embeddings obtained from knowledge graphs
on KB entities. Knowledge graph label embed-
dings are learned from known relations among en-
tities within a graph (e.g. ‘IS-A’, ‘LOCATED-AT’,
etc.), the resulting embeddings of which can group
similar entities closer in the same space (e.g. ‘pop
stars’ are in a small cluster, ‘people’ and ‘organi-
zations’ clusters are far apart, etc.) (Bordes et al.,
2013; Wang et al., 2014; Nickel et al., 2016). Once
high-level mapping from contextual information
to label embeddings is learned, the knowledge-
graph based zeroshot approach can improve the
entity linking performance given ambiguous en-
tities unseen in training data. In brief formula-
tion, the model for obtaining embeddings from a
knowledge graph (composed of subject-relation-
object (s, r, o) triplets) is as follows:

P (Ir(s, o) = 1|e, er, θ) = scoreθ
(
e(s), er(r), e(o)

)
(3)

where Ir is an indicator function of a known re-
lation r for two entities (s,o) (1: valid relation, 0:
unknown relation), e is a function that extracts em-
beddings for entities, er extracts embeddings for
relations, and scoreθ(·) is a deep neural network
that produces a likelihood of a valid triplet.

In our experiments, we use the 1M subset of the
Freebase knowledge graph (Bast et al., 2014) to
obtain label embeddings with the Holographic KB
implementation by (Nickel et al., 2016).



5

2.5 Deep Zeroshot MNED Network
(DZMNED)

Using the contextual information extracted from
surrounding text and an accompanying image
(Section 2.2) and lexical embeddings of a mention
(Section 2.3), we build a Deep Zeroshot MNED
network (DZMNED) which predicts a correspond-
ing KB entity based on its knowledge graph em-
beddings (Section 2.4) and lexical similarity (Sec-
tion 2.3) with the following objective:

min
W
LKB(x,yKB;Ww,Wv,Wf )+Lc(xc,yc;Wc)

where

LKB(·)=

1

N

N∑
i=1

∑
ỹ 6=y

(i)
KB

max[0, ỹ · y(i)
KB−f(x

(i)) · (y(i)
KB− ỹ)>]

Lc(·) =

1

N

N∑
i=1

∑
ỹ 6=y

(i)
c

max[0, ỹ · y(i)
c −c(x(i)

c ) · (y(i)
c − ỹ)>]

R(W): regularization

where LKB(·) is the supervised hinge rank loss for
knowledge graph embeddings prediction, Lc(·) is
the loss for lexical mapping between mentions
and KB entities, x is a weighted average of three
modalities x = {xw;xv;xc} via the modality at-
tention module. f(·) is a transformation function
with stacked layers that projects weighted input to
the KB embeddings space, ỹ refers to the embed-
dings of negative samples randomly sampled from
KB entities except the ground truth label of the in-
stance, W = {Wf ,Wc,Ww,Wv} are the learn-
able parameters for f , c, w, and v respectively,
andR(W) is a weight decay regularization term.

Similarly to (Moon et al., 2018), we formulate
the modality attention module for our MNED
network as follows, which selectively attenuates
or amplifies modalities:

[aw;ac;av] = σ
(
Wm · [xw;xc;xv] + bm

)
(4)

αm =
exp(am)∑

m′∈{w,c,v}
exp(am′)

∀m ∈ {w, c, v}

x =
∑

m∈{w,c,v}

αmxm (5)

where α = [αw;αc;αv] ∈ R3 is an attention vec-
tor, and x is a final context vector that maximizes
information gain.

Intuitively, the model is trained to produce a
higher dot product similarity between the pro-
jected embeddings with its correct label than with
an incorrect negative label in both the knowledge
graph label embeddings and the lexical embed-
dings spaces, where the margin is defined as the
similarity between a ground truth sample and a
negative sample.

At test time, the following label-producing
nearest neighbor (1-NN) classifier is used for the
target task (we cache all the label embeddings to
avoid repetitive projections):

1-NN(x) = argmax
(yKB,yc)∈YKB

f(x) ·yKB
>+g(xc) ·yc

>

(6)
In summary, the model produces (1) projec-

tion of input modalities (mention, surrounding
text, image) into the knowledge graph embed-
dings space, and (2) lexical embeddings represen-
tation of mention, which then calculates a com-
bined score of contextual (knowledge graph) and
string similarities with each entity in YKB.

3 Empirical Evaluation

Task: Given a caption and an accompanying im-
age (if available), the goal is to disambiguate and
link a target mention in a caption to a correspond-
ing entity from the knowledge base (1M subset of
the Freebase knowledge graph (Bast et al., 2014)).

3.1 Datasets

Our SnapCaptionsKB dataset is composed of
12K user-generated image and textual caption
pairs where named entities in captions and their
links to KB entities are manually labeled by ex-
pert human annotators. These captions are col-
lected exclusively from snaps submitted to pub-
lic and crowd-sourced stories (aka Live Stories or
Our Stories). Examples of such stories are “New
York Story” or “Thanksgiving Story”, which are
aggregated collections of snaps for various pub-
lic venues, events, etc. Our data do not con-
tain raw images, and we only provide textual cap-
tions and obfuscated visual descriptor features ex-
tracted from the pre-trained InceptionNet. We
split the dataset randomly into train (70%), val-
idation (15%), and test sets (15%). The cap-
tions data have average length of 29.5 characters
(5.57 words) with vocabulary size 16,553, where
6,803 are considered unknown tokens from Stan-
ford GloVE embeddings (Pennington et al., 2014).
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Named entities annotated in the dataset include
many of new and emerging entities found in vari-
ous surface forms. To the best of our knowledge,
our SnapCaptionsKB is the only dataset that con-
tains image-caption pairs with human-annotated
named entities and their links to KB entities.

3.2 Baselines
We report performance of the following state-of-
the-art NED models as baselines, with several can-
didate generation methods and variations of our
proposed approach to examine contributions of
each component (W: word, C: char, V: visual).

Candidates generation: Note that our zeroshot
approach allows for entity disambiguation with-
out a fixed candidates generation process. In fact,
we observe that the conventional method for fixed
candidates generation harms the performance for
noisy social media posts with many emerging enti-
ties. This is because the difficulty of entity linking
at test time rises not only from multiple entities (e)
linking to a single mention (m), but also from each
entity found in multiple surface forms of mentions
(often unseen at train time). To show the efficacy
of our approach that does not require candidates
generation, we compare with the following candi-
dates generation methods:

• m→e hash list: This method retrieves KB en-
tity (e) candidates per mention (m) based on
exact (m, e) pair occurrence statistics from a
training corpora. This is the most predom-
inantly used candidates generation method
(He et al., 2013; Yamada et al., 2016; Eshel
et al., 2017). Note that this approach is es-
pecially vulnerable at test time to noisy men-
tions or emerging entities with no or a few
matching candidate entities from training set.

• k-NN: We also consider using lexical neigh-
bors of mentions from KB entities as can-
didates. This approach can be seen as soft
normalization to relax the issue of having to
match a variety of surface forms of a men-
tion to KB entities. We use our Deep Leven-
shtein (Section 2.3) to compute lexical em-
beddings of KB entities and mentions, and
retrieves Euclidean neighbors (and their pol-
ysemous entities) as candidates.

NED models: We choose as baselines the fol-
lowing state-of-the-art NED models for noisy text,
as well as several configurations of our proposed

approach to examine contributions of each compo-
nent (W: word, C: char, V: visual).

• sDA-NED (W only) (He et al., 2013): uses a
deep neural network with stacked denoising
autoencoders (sDA) to encode bag-of-words
representation of textual contexts and to di-
rectly compare mentions and entities.

• ARNN (W only) (Eshel et al., 2017): uses an
Attention RNN model that computes similar-
ity between word and entity embeddings to
disambiguate among fixed candidates.

• Deep Zeroshot (W only): uses the deep ze-
roshot architecture similar to Figure 2, but
uses word contexts (caption) only.

• (proposed) DZMNED + Deep Levenshtein
+ InceptionNet with modality attention
(W+C+V): is the proposed approach as de-
scribed in Figure 2.

• (proposed) DZMNED + Deep Levenshtein
+ InceptionNet w/o modality attention
(W+C+V): concatenates all the modality
vectors instead.

• (proposed) DZMNED + Deep Levenshtein
(W+C): only uses textual context.

• (proposed) DZMNED + Deep Levenshtein
w/o modality attention (W+C): does not use
the modality attention module, and instead
concatenates word and lexical embeddings.

3.3 Results

Parameters: We tune the parameters of each
model with the following search space (bold in-
dicate the choice for our final model): character
embeddings dimension: {25, 50, 100, 150, 200,
300}, word embeddings size: {25, 50, 100, 150,
200, 300}, knowledge graph embeddings size:
{100, 200, 300}, LSTM hidden states: {50, 100,
150, 200, 300}, and x dimension: {25, 50, 100,
150, 200, 300}. We optimize the parameters with
Adagrad (Duchi et al., 2011) with batch size 10,
learning rate 0.01, epsilon 10−8, and decay 0.1.

Main Results: Table 1 shows the Top-1, 3, 5,
10, and 50 candidates retrieval accuracy results
on the Snap Captions dataset. We see that the
proposed approach significantly outperforms the
baselines which use fixed candidates generation
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Modalities Model
Candidates
Generation

Accuracy (%)

Top-1 Top-3 Top-5 Top-10 Top-50

W ARNN (Eshel et al., 2017) m→e list 51.2 60.4 66.5 66.9 66.9
W ARNN 5-NN (lexical) 35.2 43.3 45.0 - -
W ARNN 10-NN (lexical) 31.9 40.1 44.5 50.7 -
W sDA-NED (He et al., 2013) m→e list 48.7 57.3 66.3 66.9 66.9

W Zeroshot N/A 43.6 63.8 67.1 70.5 77.2
W + C DZMNED N/A 67.0 72.7 74.8 76.8 85.0
W + C DZMNED + Modality Attention N/A 67.8 73.5 74.8 76.2 84.6
W + C + V DZMNED N/A 67.2 74.6 77.7 80.5 88.1
W + C + V DZMNED + Modality Attention N/A 68.1 75.5 78.2 80.9 87.9

Table 1: NED performance on the SnapCaptionsKB dataset at Top-1, 3, 5, 10, 50 accuracies. The classi-
fication is over 1M entities. Candidates generation methods: N/A, or over a fixed number of candidates
generated with methods: m→e hash list and kNN (lexical neighbors).

KB Embeddings Top-1 Top-5 Top-10

Trained with 1M entities 68.1 78.2 80.9

Trained with 10K entities 60.3 72.5 75.9
Random embeddings 41.4 45.8 48.0

Table 2: MNED performance (Top-1, 5, 10 accu-
racies) on SnapCaptionsKB with varying qualities
of KB embeddings. Model: DZMNED (W+C+V)

method. Note that m→ e hash list-based meth-
ods, which retrieve as candidates the KB entities
that appear in the training set of captions only, has
upper performance limit at 66.9%, showing the
limitance of fixed candidates generation method
for unseen entities in social media posts. k-NN
methods which retrieve lexical neighbors of men-
tion (in an attempt to perform soft normalization
on mentions) also do not perform well. Our pro-
posed zeroshot approaches, however, do not fixate
candidate generation, and instead compares com-
bined contextual and lexical similarities among
all 1M KB entities, achieving higher upper per-
formance limit (Top-50 retrieval accuracy reaches
88.1%). This result indicates that the proposed
zeroshot model is capable of predicting for un-
seen entities as well. The lexical sub-model can
also be interpreted as functioning as soft neural
mapping of mention to potential candidates, rather
than heuristic matching to fixed candidates.

In addition, when visual context is available
(W+C+V), the performance generally improves
over the textual models (W+C), showing that vi-
sual information can provide additional contexts
for disambiguation. The modality attention mod-
ule also adds performance gain by re-weighting
the modalities based on their informativeness.

Error Analysis: Table 3 shows example cases
where incorporation of visual contexts affects dis-
ambiguation of mentions in textual captions. For
example, polysemous entities such as ‘Jordan’ in
the caption “Taking the new Jordan for a walk”
or ‘CID’ as in “LETS GO CID” are hard to dis-
ambiguate due to the limited textual contexts pro-
vided, while visual information (e.g. visual tags
‘footwear’ for Jordan, ‘DJ’ for CID) provides sim-
ilarities to each mention’s distributional semantics
from other training examples. Mentions unseen
at train time (‘STEPHHHH’, ‘murica’) often re-
sort to lexical neighbors by (W+C), whereas vi-
sual contexts can help disambiguate better. A few
cases where visual contexts are not helpful include
visual tags that are not related to mentions, or do
not complement already ambiguous contexts.

Sensitivity to KB Embeddings Quality: The
proposed approach relies its prediction on entity
matching in the KB embeddings space, and hence
the quality of KB embeddings is crucial for suc-
cessful disambiguation. To characterize this as-
pect, we provide Table 2 which shows MNED per-
formance with varying quality of embeddings as
follows: KB embeddings learned from 1M knowl-
edge graph entities (same as in the main experi-
ments), from 10K subset of entities (less triplets
to train with in Eq.3, hence lower quality), and
random embeddings (poorest) - while all the other
parameters are kept the same. It can be seen that
the performance notably drops with lower quality
of KB embeddings. When KB embeddings are re-
placed by random embeddings, the network effec-
tively prevents the contextual zeroshot matching to
KB entities and relies only on lexical similarities,
achieving the poorest performance.
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Caption (target) Visual Tags GT
Top-1 Prediction

(W+C+V) (W+C)

+

“YA BOI STEPHHHH” sports equip, ball, parade, ... Stephen Curry (=GT) Stephenville
“Taking the new Jordan for a walk” footwear, shoe, sock, ... Air Jordan (=GT) Michael Jordan
“out for murica’s bday ” parade, flag, people, ... U.S.A. (=GT) Murcia (Spain)
“Come on now, Dre” club, DJ, night, ... Dr. Dre (=GT) Dre Kirkpatrick
“LETS GO CID” drum, DJ, drummer, ... CID (DJ) (=GT) CID (ORG)

-
“kick back hmu for addy.” weather, fog, tile, ... Adderall GoDaddy (=GT)
“@Sox to see get retired! ” sunglasses, stadium, ... Red Sox White Sox White Sox

Table 3: Error analysis: when do images help NED? Ground-truth (GT) and predictions of our model
with vision input (W+C+V) and the one without (W+C) for the underlined mention are shown. For
interpretability, visual tags (label output of InceptionNet) are presented instead of actual feature vectors.

4 Related Work

NED task: Most of the previous NED mod-
els leverage local textual information (He et al.,
2013; Eshel et al., 2017) and/or document-wise
global contexts (Hoffart et al., 2011; Chisholm and
Hachey, 2015; Pershina et al., 2015; Globerson
et al., 2016), in addition to other auxiliary con-
texts or priors for disambiguating a mention. Note
that most of the NED datasets (e.g. TAC KBP
(Ji et al., 2010), ACE (Bentivogli et al., 2010),
CoNLL-YAGO (Hoffart et al., 2011), etc.) are
extracted from standardized documents with web
links such as Wikipedia (with relatively ample tex-
tual contexts), and that named entitiy disambigua-
tion specifically for short and noisy social media
posts are rarely discussed. Note also that most
of the previous literature assume the availability
of “candidates” or web links for disambiguation
via mention-entity pair counts from training set,
which is vulnerable to inconsistent surface forms
of entities predominant in social media posts.

Our model improves upon the state-of-the-art
NED models in three very critical ways: (1) in-
corporation of visual contexts, (2) addition of the
zeroshot learning layer, which allows for disam-
biguation of unseen entities during training, and
(3) addition of the lexical model that computes
lexical similarity entities to correctly recognize in-
consistent surface forms of entities.

Multimodal learning studies learning of a joint
model that leverages contextual information from
multiple modalities in parallel. Some of the rele-
vant multimodal learning task to our MNED sys-
tem include the multimodal named entity recog-
nition task (Moon et al., 2018), which leverages
both text and image to classify each token in a
sentence to named entity or not. In their work,

they employ an entity LSTM that takes as in-
put each modality, and a softmax layer that out-
puts an entity label at each decoding step. Con-
trast to their work, our MNED addresses unique
challenges characterized by zeroshot ranking of
1M knowledge-base entities (vs. categorical en-
tity types prediction), incorporation of an external
knowledge graph, lexical embeddings, etc. An-
other is the multimodal machine translation task
(Elliott et al., 2015; Specia et al., 2016), which
takes as input text in source language as well as
an accompanying image to output a translated text
in target language. These models usually employ a
sequence-to-sequence architecture (e.g. target lan-
guage decoder takes as input both encoded source
language and images) often with traditional atten-
tion modules widely used in other image caption-
ing systems (Xu et al., 2015; Sukhbaatar et al.,
2015). To the best of our knowledge, our approach
is the first multimodal learning work at incorporat-
ing visual contexts for the NED task.

5 Conclusions

We introduce a new task called Multimodal
Named Entity Disambiguation (MNED), which is
applied on short user-generated social media posts
that are composed of text and accompanying im-
ages. Our proposed MNED model improves upon
the state-of-the-art models by 1) extracting visual
contexts complementary to textual contexts, 2) by
leveraging lexical embeddings into entity match-
ing which accounts for various surface forms of
entities, removing the need for fixed candidates
generation process, and 3) by performing entity
matching in the distributed knowledge graph em-
beddings space, allowing for matching of unseen
mentions and entities by context resolutions.
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