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ABSTRACT
We consider classification of email messages as to whether
or not they contain certain “email acts”, such as a request or
a commitment. We show that exploiting the sequential cor-
relation among email messages in the same thread can im-
prove email-act classification. More specifically, we describe
a new text-classification algorithm based on a dependency-
network based collective classification method, in which the
local classifiers are maximum entropy models based on words
and certain relational features. We show that statistically
significant improvements over a bag-of-words baseline classi-
fier can be obtained for some, but not all, email-act classes.
Performance improvements obtained by collective classifica-
tion appears to be consistent across many email acts sug-
gested by prior speech-act theory.

Categories and Subject Descriptors
I.2.6 [Articial Intelligence]: Learning; H.4.1 [Information
Systems Applications]: Office Automation; I.5.4
[Pattern Recognition]: Applications

General Terms
Algorithms, Management, Measurement, Performance, Ex-
perimentation, Human Factors.

Keywords
Text Classification, Email Management, Speech Acts, Ma-
chine Learning, Collective Classification.

1. INTRODUCTION
One important use of work-related email is negotiating

and delegating shared tasks and subtasks. To provide in-
telligent automated assistance for this use of email, it is
desirable to be able to automatically detect the purpose of
an email message—for example, to determine if the email
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contains a request, a commitment by the sender to perform
some task, or an amendment to an earlier proposal.

In a previous work, we presented experimental results
on using text classification methods to detect such “speech
acts” in email [4]. Based on theories of speech acts, and
guided by analysis of several email corpora, we defined a
set of “email verbs” (e.g., Request, Deliver, Propose, Com-
mit) and considered the problem of classifying emails as to
whether or not they contain a specific verb. Thus each verb
becomes a binary text classification problem. (Note how-
ever that an email may contain several verbs, so the binary
classes are not mutually exclusive.) We also defined a set
of “email nouns”, which are the objects of these verbs (for
instance one might Request either Data, an Opinion, or an
Activity), which were treated analogously.

In our previous work [4], messages were classified using
traditional text classification methods—methods that used
features based only on the content of the message. How-
ever, it seems reasonable that the context of a message is
also informative. Specifically, in a sequence of messages, the
intent of a reply to a message M will be related to the in-
tent of M: for instance, an email containing a Request for
a Meeting might well be answered by an email that Com-
mits to a Meeting. More generally, because negotiations are
inherently sequential, one would expect strong sequential
correlation in the “email-acts” associated with a thread of
task-related email messages, and one might hope that ex-
ploiting this sequential correlation among email messages in
the same thread would improve email-act classification.

The sequential aspects of work-related interactions and
negotiations have been investigated by many previous re-
searchers [12][16]. For example, Winograd and Flores [17]
proposed the highly influential idea of action-oriented con-
versations based on a particular taxonomy of linguistic acts;
an illustration of one of their structures can be seen in Fig-
ure 1. However, it is not immediately obvious to what extent
prior models of negotiation apply to email. One problem is
that email is non-synchronous, so multiple acts are often em-
bedded in a single email. Another problem is that email can
be used to actually perform certain acts—notably, acts that
require the delivery of files or information—as well as be-
ing a medium for negotiation. In our previous work, we also
noted that certain speech acts that are theoretically possible
are either extremely rare or absent, at least in the corpora
we analyzed. In short, it cannot be taken for granted that
prior linguistic theories apply directly to email.

In this paper we study the use of the sequential infor-
mation contained in email threads, and more specifically,



Figure 1: Diagram of a “Conversation for Action”
Structure from Winograd & Flores, 1986.

whether it can improve performance for email-act classifi-
cation. We first show that sequential correlations do exist;
further, that they can be encoded as “relational features”,
and used to predict the intent of email messages without
using textual features. We then combine these relational
features with textual features, using an iterative collective
classification procedure. We show that this procedure pro-
duces a consistent improvement on some, but not all, email
acts.

2. “EMAIL-ACTS” TAXONOMY AND
APPLICATIONS

Figure 2: Taxonomy of email-acts used in experi-
ments. Shaded nodes are the ones for which a clas-
sifier was constructed.

A taxonomy of speech acts applied to email communi-
cation (email-acts) has been described and motivated else-
where [4]. As noted above, the taxonomy was divided into
verbs and nouns, and each email message is represented by
one or more verb-noun pairs: for example, an email propos-
ing a meeting would have the labels Propose, Meeting. The
relevant part of the taxonomy is shown in Figure 2. Very
briefly, a Request asks the recipient to perform some activity;
a Propose message proposes a joint activity (i.e., asks the re-
cipient to perform some activity and commits the sender); a

Commit message commits the sender to some future course
of action; Data is information, or a pointer to information,
delivered to the recipient; and a Meeting is a joint activ-
ity that is constrained in time and (usually) space. Several
other possible verbs/nouns were not considered here (such
as Refuse, Greet, and Remind), either because they occurred
very infrequently in our corpus, or because they did not ap-
pear to be important for task-tracking. The most common
verbs found in the labeled datasets were Deliver, Request,
Commit, and Propose, and the most common nouns were
Meeting and deliveredData (abbreviated as dData hence-
forth). We also consider two aggregations of verbs: the set
of Commissive acts is the union of Deliver and Commit, and
the set of Directive acts is the union of Request, Propose and
Amend. (Amend is not considered separately here.)

Our prior work [4] showed that machine learning algo-
rithms can learn the proposed email-act categories reason-
ably accurately. It was also shown that there is an accept-
able level of human agreement over the categories. In ex-
periments using different human annotators, Kappa values
between 0.72 and 0.85 were obtained. The Kappa statistic
[2] is typically used to measure the human inter-rater agree-
ment. Its values ranges from -1 (complete disagreement) to
+1 (perfect agreement) and it is defined as (A-R)/(1-R),
where A is the empirical probability of agreement on a cate-
gory, and R is the probability of agreement for two annota-
tors that label documents at random (with the empirically
observed frequency of each label).

Error rate is a poor measure of performance for skewed
classes, since low error rates can be obtained by simply
guessing the majority class. Kappa controls for this, since in
a highly a skewed class, randomly guessing classes accord-
ing to the frequency of each class is very similar to always
guessing the majority class; thus R in the formula will be
very close to 1.0. Empirically, Kappa measurements on our
datasets are usually closely correlated to the more widely
used F1-measure.

A method for accurate classification of email into such
categories would have many potential applications. For in-
stance, it could be used to help an email user track the status
of ongoing joint activities. Delegation and coordination of
joint tasks is a time-consuming and error-prone activity, and
the cost of errors is high: it is not uncommon that commit-
ments are forgotten, deadlines are missed, and opportunities
are wasted because of a failure to properly track, delegate,
and prioritize subtasks. We believe such classification meth-
ods which could be used to partially automate this sort of
email activity tracking, in the sender’s email client as well
as in the recipient’s.

Another application for email-acts classification would be
predicting hierarchy position in structured organizations or
email-centered teams. For instance it has been observed
[3] that leadership roles in small email-centered workgroups
can be predicted by the distribution of email-acts on the
messages exchanged among the group members. The same
general idea was suggested in [11], with a different taxonomy
of email intentions. Predicting the leadership role is useful
for many purposes, such as analysis of group behavior for
teams without an explicitly assigned leader.

3. THE CORPUS
Although email is ubiquitous, large and realistic email cor-

pora are rarely available for research purposes due to privacy



considerations. The CSpace email corpus used in this pa-
per contains approximately 15,000 email messages collected
from a management course at Carnegie Mellon University.
The email used in our experiments originated from work-
ing groups who signed agreements to make certain parts of
their email accessible to researchers. In this course, 277
MBA students, organized in approximately 50 teams of four
to six members, ran simulated companies in different market
scenarios over a 14-week period [10]. The email tends to be
very task-oriented, with many instances of task delegation
and negotiation.

Messages were mostly exchanged with members of the
same team. Accordingly, we partitioned the corpus into sub-
sets according to the teams for many of the experiments.
The 1F3 team dataset has 351 messages total, while the
2F2 team has 341, and the 3F2 team has 443. In our exper-
iments, we considered only the subset of messages that were
in threads (as defined by the reply-To field of the email mes-
sage), which reduced our actual dataset to 249 emails from
3F2, 170 from 1F3, and 137 from 2F2. More precisely, all
messages in the original CSpace database of monitored email
messages contained a parentID field, indicating the identity
of the message to which the current one is a reply. Using
this information, we generated a list of children messages (or
messages generated in-reply-to this one) to every message.
A thread thus consists of a root message and all descendent
messages, and in general has the form of a tree, rather than
a linear sequence. However, the majority of the threads are
short, containing 2 or 3 emails, and most messages have at
most one child.

Compared to common datasets used in the relational
learning literature, such as IMBd, WebKB or Cora [13], our
dataset has a much smaller amount of linkage. A message
is linked only to its children and its parent, and there are
no relationships between two different threads, or among
messages belonging to different threads. However, the
relatively small amount of linkage simplified one technical
issue in performing experiments with relational learning
techniques: ensuring that all test set instances are unrelated
to the training set instances. In most of our experiments,
we split messages into training and testing sets by teams.
Since each of the teams worked largely in isolation from the
others, most of their relational information is contained in
the same subset.

4. EVIDENCE FOR SEQUENTIAL
CORRELATION OF EMAIL ACTS

4.1 Pairwise correlation of adjacent acts
The sequential nature of email acts is illustrated by the

regularities that exist between the acts associated with a
message, and the acts associated with its children. The tran-
sition diagram in Figure 3 was obtained by computing, for
the four most frequent verbs, the probability of the next
message’s email-act given the current message’s act over all
four datasets. In other words, an arc from A to B with label
p indicates that p is the probability over all messages M that
some child of M has label B, given than M has label A. It is
important to notice that an email message may have one or
more email-acts associated with it. A Request, for instance,
may be followed by a message that contains a Deliver and
also a Commit. Therefore, the transition diagram in Figure

Figure 3: Transition Diagram for the four most com-
mon specific verbs.

3 is not a probabilistic DFA.
Deliver and Request are the most frequent acts, and they

are also closely coupled. Perhaps due to the asynchronous
nature of email and the relatively high frequency of Deliver,
there is a tendency for almost anything to be followed by
a Deliver message; however, Deliver is especially common
after Request or another Deliver. In contrast, a Commit is
most probable after a Propose or another Commit, which
agrees with intuitive and theoretical ideas of a negotiation
sequence. (Recall that an email thread may involve several
people in an activity, all of whom may need to commit to a
joint action.) A Propose is unlikely to follow anything, as
they usually initiate a thread.

Very roughly one can view the graph above as encapsu-
lating three likely types of verb sequences, which could be
described with the regular expressions (Request, Deliver+),
(Propose, Commit+, Deliver+), and (Propose, Deliver+).

4.2 Predicting Acts from Surrounding Acts
As another test of the degree of sequential correlation in

the data, we considered the problem of predicting email acts
using other acts in the same thread as features. We repre-
sented each message with the set of relational features shown
in Table 1: for instance, the feature Parent Request is true if
the parent of contains a request; the feature Child Directive
is true if the first1 child of a message contains a Directive
speech act.

We performed the following experiment with these fea-
tures. We trained eight different maximum entropy [1]
classifiers, one for each email-act, using only the features
from Table 1. (The implementation of the Maximum En-
tropy classifier was based on the Minorthird toolkit [5]; it
uses limited-memory quasi-Newton optimization [15] and a
Gaussian prior.) The classifiers were then evaluated on a
different dataset. Figure 4 illustrates results using 3F2 as
training set and 1F3 as test set, measured in terms of the
Kappa statistic. Recall that a Kappa value of zero indicates
random agreement, so the results of Figure 4 indicate that

1The majority of the messages having children have only
child, so instead of using features from all children mes-
sages, we consider only features from the first child. This
restriction makes no significant difference in the results.



Table 1: Set of Relational Features

Parent Features Child Features

Parent Request Child Request
Parent Deliver Child Deliver
Parent Commit Child Commit
Parent Propose Child Propose
Parent Directive Child Directive
Parent Commissive Child Commissive
Parent Meeting Child Meeting
Parent dData Child dData

Figure 4: Kappa Values on 1F3 using Relational
(Context) features and Textual (Content) features.

there is predictive value in these features. For comparison,
we also show the Kappa value of a maximum-entropy
classifier using only “content” (bag-of-words features).

Notice that in order to compute the features for a mes-
sage M, and therefore evaluate the classifiers that predict the
email-acts, it is necessary to know what email-acts are con-
tained in the surrounding messages. This circularity means
that the experiment above does not suggest a practically
useful classification method—although it does help confirm
the intuition that there is useful information in the sequence
of classes observed in a thread. Also, it is still possible that
the information derivable from the relational features is re-
dundant with the information available in the text of the
message; if so, then adding label-sequence information may
not improve the overall email-act classification performance.
In the next section we consider combining the relational and
text features in a practically useful classification scheme.

5. ITERATIVE CLASSIFICATION

5.1 The Algorithm
In order to construct a practically useful classifier that

combines the relational “context” features with the textual
“content” features used in traditional bag-of-words text clas-
sification [4], it is necessary to break the cyclic dependency
between the email acts in a message and the email acts in its
parent and children messages. Such a scheme can not clas-
sify each message independently: instead classes must be si-
multaneously assigned to all messages in a thread. Such col-

lective classification methods, applied to relationally-linked
collections of data, have been an active area of research for
several years, and several schemes have been proposed. For
instance, using an iterative procedure on a web page dataset,
Chakrabarti et al. [6] achieved significant improvements in
performance compared a non-relational baseline; also, in a
dataset of corporate information, Neville and Jensen [13]
used an iterative classification algorithm that updates the
test set inferences based on classifier confidence. Overviews
of recent relational classification papers can be found else-
where [9][14].

The scheme we use is dictated by the characteristics of
the problem. Every message has multiple binary labels to
assign, all of which are potentially interrelated. Further, al-
though in the current paper we consider only parent-child
relations implied by the reply-To field, the relational connec-
tions between messages are potentially quite rich—for exam-
ple, it might be plausible to establish connections between
messages based on social network connections between re-
cipients as well. We thus adopted a fairly powerful model,
based on iteratively re-assigning email-act labels through a
process of statistical relaxation.

Initially, we train eight maximum entropy classifiers (one
for each act) from a training set. The features used for
training are the words on the email body, the words in the
email subject, and the relational features listed in Table 1.
These eight classifiers will be referred to as local classifiers.

The inference procedure used to assign email-act label
with these classifiers is as follows. We begin by initializing
the eight classes of each message randomly (or according to
some other heuristic, as detailed below). We then perform
this step iteratively: for each message we infer, using the
local classifiers, the prediction confidence of each one of the
eight email-acts, given the current labeling of the messages
in the thread. (Recall that computing the relational features
requires knowing the “context” of the message, represented
by the email-act labels of its parent and child messages.)
If, for a specific act, the confidence is larger than a confi-
dence threshold θ, we accept (update) the act with the label
suggested by the local classifier. Otherwise, no updates are
made, and the message keeps its previous act.

The confidence threshold θ decreases linearly with the it-
eration number. Therefore, in the first iteration (j = 0), θ
will be 100% and no classes will be updated at all, but after
the 50th iteration, θ will be set to 50%, and all messages will
be updated. This policy first updates the acts that can be
predicted with high confidence and delays the low confidence
classifications to the end of the process.

The algorithm is summarized in Table 2. The iterative
collective classification algorithm proposed is in fact an im-
plementation of a Dependency Network (DN) [8]. Depen-
dency networks are probabilistic graphical models in which
the full joint distribution of the network is approximated
with a set of conditional distributions that can be learned
independently. The conditional probability distributions in
a DN are calculated for each node given its parent nodes (its
Markov blanket). In our case, the nodes are the messages
in an email thread, and the Markov blanket is the parent
message and the child messages. The confidence thresh-
old represents a temperature-sensitive, annealing variant of
Gibbs sampling [7]; after the first 50 iterations, it reverts to
pure Gibbs sampling. In our experiment below, instead of
initializing the test set with random email-act classes, we al-



Table 2: Collective Classification Algorithm.

1. For each of the 8 email-acts, build a local classifier LCact

from the training set.

2. Initialize the test set with email-act classes based on a
content-only classifier.

3. For each iteration j=0 to T:

(a) Update Confidence Threshold(%) θ = 100− j;

(b) If (θ < 50), make θ = 50;

(c) For every email msg in test set:

i. For each email-act class:

• obtain confidence(act, msg) from
LCact(msg)

• if (confidence(act, msg) > θ), update email-
act of msg

(d) Calculate performance on this iteration.

4. Output final inferences and calculate final performance.

ways used a maximum entropy classifier previously trained
only with the bag-of-words from a different dataset, and the
number of iterations T was set to 60, ensuring 10 iterations
of “pure” Gibbs sampling.

5.2 Initial Experiments
Initial experiments used for development were performed

using 3F2 as the training set and 1F3 as the test set. Results
of these experiments can be found in Table 3. The leftmost
part of Table 3 presents the results for when only the bag-of-
words features are used. The second part of Table 3 shows
the performance when training and testing steps use bag-
of-words features as well as the true labels of neighboring
messages (yellow bars in Figure 4). It reflects the maximum
gain that could be granted by using the relational features;
therefore, it gives as an “upper bound” of what we should
expect from the iterative algorithm.

In addition to Kappa (κ), we report the more widely-used
F1 statistic. We also give the improvement in Kappa (∆κ)
over the baseline bag-of-words method, where it is relevant.

For the Deliver act, this “upper bound” is negative: in
other words, the presence of the relational features degrades
the performance of the bag-of-words maximum entropy clas-
sifier, even when one assumes the classes of all other mes-
sages in a thread are known.

The third part of Table 3 presents the performance of the
system if the test set used the estimated labels (instead of
the true labels). Equivalently, it represents the performance
of the iterative algorithm on its first iteration. The right-
most part of Table 3 shows the performance obtained at the
end of the iterative procedure. For every act, Kappa im-
proves as a result of following the iterative procedure. Rel-
ative to the bag-of-words baseline, Kappa is improved for
all but two acts, Deliver (which is again degraded in perfor-
mance) and Propose (which is essentially unchanged.) The
highest performance gains are for Commit and Commissive.

Figure 6 illustrates the performance of three representa-
tive email-acts as the iterative procedure runs. In these
curves we can see that two acts (Commissive and Request)
have their performance improved considerably as the num-
ber of iteration increases. Another act, Deliver, has a slight
deterioration in performance.

Figure 5: Kappa versus iteration on 1F3, using clas-
sifiers trained on 3F2.

5.3 Leave-one-team-out Experiments
In the initial experiments, 3F2 was used as the training

set, and 1F3 was the test set. As an additional test, labeled
data for a fourth team, 4F4 team, which had 403 total mes-
sages and 165 threaded messages. We then performed four
additional experiments in which data from three teams was
used in training, and data from the fourth team was used
for testing.

It should be emphasized that the choice to test on email
from a team not seen in training makes the prediction prob-
lem more difficult, as the different teams tend to adopt
slightly different styles of negotiation: for instance, propos-
als are more frequently used by some groups than others.
Higher levels of performance would be expected if we trained
and tested on an equivalent quantity of email generated by
a single team (as we did in elsewhere [4]).

Figure 6 shows a scatter plot, in which each point rep-
resents an email act, plotted so that its Kappa value for
the bag-of-words baseline is the x-axis position, and the
Kappa for the iterative procedure is the y-axis position.
Thus points above the line y=x (the dotted line in the fig-
ure) represent an improvement over the baseline. There are
four points for each email-act: one for each test team in this
“leave one team out” experiment.

As in the preliminary experiments, performance is usu-
ally improved. Importantly, performance is improved for
six of the eight email acts for the team 4F4, the data for
which was collected after all algorithm development was
complete. Thus performance on 4F4 is a prospective test
of the method.

Further analysis suggests that the variations in perfor-
mance of the iterative scheme are determined largely by the
specific email act involved. Commissive, Commit, and Meet
were improved most in the preliminary experiments, and
Proposal and Deliver were improved least. The graph of
Figure 7 shows that the Commissive, Commit, and Meet
are consistently improved by collective classification meth-
ods in the prospective tests as well. However, performance
on the remaining classes is sometimes degraded.

Finally, Figure 8 shows the same results, with the speech
acts broken into two classes: Deliver and dData, and all
other classes. We note that Deliver is a quite different type
of “speech act” from those normally considered in the liter-



Table 3: Email-Acts Classification Performance on 1f3 Dataset
train: 3f2 Bag-of-words only Bag-of-words + Bag-of-words + Bag-of-words +
test: 1f3 (baseline) True Relational Labels Estimated Relational Estimated Relational

(Upper Bound) Labels Labels + Iterative
F1 κ F1 κ ∆κ F1 κ ∆κ F1 κ ∆κ

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Request 63.49 43.87 65.00 47.06 7.27 62.29 42.65 -2.78 63.93 45.14 2.89
Deliver 77.08 47.47 74.07 41.67 -12.22 70.65 36.03 -24.10 71.27 35.78 -24.63
Commit 36.66 23.16 44.44 34.37 48.40 41.50 31.25 34.93 44.06 32.42 39.98
Propose 46.87 34.68 46.66 35.25 1.64 40.67 28.26 -18.51 45.61 34.66 -0.06
Directive 73.62 43.63 76.50 49.50 13.45 76.08 48.34 10.80 75.82 48.32 10.75
Commissive 77.47 35.19 81.41 44.58 26.68 80.00 43.47 23.53 82.96 47.83 35.92
Meeting 65.18 42.26 68.57 46.60 10.27 67.64 46.07 9.02 69.11 48.52 14.81
dData 41.66 37.76 41.66 37.76 0.00 41.66 37.76 0.00 43.47 40.04 6.04

Figure 6: Plot of baseline Kappa (x-axis) versus
Kappa after iterative collective classification was
performed. Points above the dotted line represent
an improvement.

ature, as it represents use of email as a data-distribution
tool, rather than as a medium for negotiation and com-
munication. Figure 3 also shows that Deliver, has a fairly
high probability of occurring after any speech act, unlike the
other verbs. Based on these observations it is reasonable to
conjecture that sequential correlations might be different for
delivery-related email acts than for other email acts. Figure
8 shows that the collective classification method obtains a
more consistent improvement for non-delivery email acts.

As a final summary of performance, Figure 9 shows,
for each of the eight email acts, the Kappa value for each
method, averaged across the four separate test sets. Con-
sistent with the more detailed analysis above, there is an
average improvement in average Kappa values for all the
non-delivery related acts, but an average loss for Deliver
and dData.

The improvement in average Kappa is statistically sig-
nificant for the non-delivery related email acts (p=0.01 on
a two-tailed T-test); however, the improvement across all
email acts is not statistically significant (p=0.18 ).

The preceding T-test considers significance of the im-
provement treating the data of Figure 9 as draws from a
population of email-act classification problems. One could

Figure 7: Performance improvement by groups of
email-acts. Groups were selected based on perfor-
mance in the preliminary tests.

also take each act separately, and consider the four test
values as draws from a population of working teams. This
allows one to test the significance of the improvement for
a particular email act—but unfortunately, one has only
four samples with which to estimate significance. With
this test, the improvement in Commissive is significant
with a two-tailed test (p=0.01 ), and the improvement
in Meeting is significant with a one-tailed test (p=0.04 ).
The improvement in Commit are not significant (p=0.06
on a one-tailed test). In no case is a loss in performance
statistically significant.

6. DISCUSSION
The experiments above demonstrate that a fairly straight-

forward scheme for collectively classifying email messages in
a thread can improve performance. Our scheme is based on
a dependency net (DN), in every email-act is predicted by a
separate “local” maximum entropy (aka logistic regression)
classifier that exploits features that examine the proposed
classes of its parent and child email messages. Classifica-
tion is performed by first proposing email-act labels using a
bag-of-words classifier, and then iteratively updating labels
using the predictions of the local classifiers—a form of Gibbs
sampling.



Figure 8: Performance improvement for delivery-
related and non-delivery related email acts.

Figure 9: Kappa values with and without collective
classification, averaged over the four test sets in the
leave-one-team-out experiment.

The method improves performance for some, but not all
email-act classes. On a four-fold cross validation test, perfor-
mance is statistically significantly improved for Commissive
acts, which include Commit and Deliver, and performance
is very likely improved for Meet and Commit.

The consistent improvement of Meet is encouraging, since
in addition to recognizing intention, it is also important to
recognize the specific task that an email “verb” is relevant
to. Meeting arrangement is an easily-recognized task shared
by all the teams in our study, and hence the Meet email
“noun” served as a proxy for this sort of task-classification
problem.

Performance is not improved for two of the eight classes,
Deliver and dData. It should be noted that many email Re-
quests could plausibly be followed by a Commit (e.g., “I’ll
have the budget ready by Friday”) or a Deliver (e.g., “I’m
attaching the budget you asked for”), and context clues do
not predict which type of response will be forthcoming; this
may be why context is more useful for predicting Commis-
sive acts than the narrower class Deliver. We also note that
while the email act Deliver and its associated object dData

do model a frequent use of email, they are not suggested
by prior theoretical models of negotiation of speech acts.
The performance improvement obtained by collective classi-
fication is consistent, and statistically significant, across all
“non-delivery” acts—i.e., across all acts suggested by prior
theory.

7. CONCLUSIONS
In this work we explored how the relational information in

an email thread can be used help classifying email according
to the user’s intent (that is to recognize email-acts). While it
can be addressed using traditional text classification meth-
ods, email-act classification has unique characteristics [4].
Here we showed that the sequence of email-acts in a thread
of email messages contain information useful for classifying
certain email acts. This idea is appealing and agrees with
the general intuition that, for instance, a Commit message
is likely to be preceded by a Request or Propose, or that a
Request is likely to be followed by a Deliver.

Specifically, we showed that modest but statistically sig-
nificant improvements for some email-act classes are ob-
tained by applying a dependency-network based collective
classification method, in which the local classifiers are max-
imum entropy models based on words and certain relational
features. Statistical tests suggest that the method we pro-
posed will improve most email-acts that are justified by prior
speech-act theory.

These results are encouraging as the degree of linkage in
our data is small, the data is highly variable. The variabil-
ity arises in part because different teams adopt different task
negotiation and delegation styles, and in our experiments to
date, data from one set of teams is always used to learn
email-act classifiers for another team. In future work we
hope to study the relative value of training data obtained
from other teams, and data obtained from the team whose
email-acts are being predicted. This is an important ques-
tion, because it clarifies the degree to which classifiers for
email-acts are team- or person-dependent.

It may also be helpful to consider additional external fea-
tures that might be useful in linking data—for instance, fea-
tures that relate entities in email messages to a task, or fea-
tures that relate the senders and receivers via social network
properties. Such features could be easily integrated into our
model.
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